Vincent Fortuin
Vincent Fortuin
Home
Open Positions
Publications
Contact
Light
Dark
Automatic
1
Conservative Uncertainty Estimation By Fitting Prior Networks
Kamil Ciosek
,
Vincent Fortuin
,
Ryota Tomioka
,
Katja Hofmann
,
Richard E Turner
PDF
Cite
Code
GP-VAE: Deep Probabilistic Time Series Imputation
We show that using a Gaussian process prior in the latent space of a variational autoencoder can improve time series imputation performance, while still allowing for computationally efficient inference through a variational Gauss-Markov process.
Vincent Fortuin
,
Dmitry Baranchuk
,
Gunnar Rätsch
,
Stephan Mandt
PDF
Cite
Code
SOM-VAE: Interpretable Discrete Representation Learning on Time Series
We propose a novel version of the classical self-organizing map, which can be used as a structural prior in the latent space of a variational autoencoder, enabling interpretable representations of time series.
Vincent Fortuin
,
Matthias Hüser
,
Francesco Locatello
,
Heiko Strathmann
,
Gunnar Rätsch
PDF
Cite
Code
InspireMe: Learning Sequence Models for Stories
Vincent Fortuin
,
Romann M Weber
,
Sasha Schriber
,
Diana Wotruba
,
Markus H Gross
PDF
Cite
An example conference paper
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Duis posuere tellus ac convallis placerat. Proin tincidunt magna sed ex sollicitudin condimentum.
Vincent Fortuin
,
Robert Ford
Jul 1, 2013
PDF
Cite
Project
Slides
«
Cite
×